
Intelligent Real-Time Hypoglycemia Prediction for
Type 1 Diabetes

Nevien A. Mahdy
Electrical Engineering Department

Benha Faculty of Engineering, Benha University
Benha, Egypt

niven.mahdy@bhit.bu.edu.eg

Ahmed F. Elnokrashy
1Electrical Engineering Department

Benha Faculty of Engineering, Benha University
Benha, Egypt

2Computer Science Department
Faculty of Information Technology and Computer Science, Nile University

Giza, Egypt
ahmed.elnokrashy@bhit.bu.edu.eg

D. A. Hammad
Basic Engineering Sciences Department

Benha Faculty of Engineering, Benha University
Benha, Egypt

doaa.hammad@bhit.bu.edu.eg

Wael A. Mohamed
Electrical Engineering Department

Benha Faculty of Engineering, Benha University
Benha, Egypt

Wael.ahmed@bhit.bu.edu.eg

Abstract—Hypoglycemia in Type 1 Diabetes (T1D) refers to a
condition where blood glucose (BG) levels drop to abnormally
low levels, typically below 70 mg/dL. This can occur when there is
an excessive amount of insulin relative to the blood glucose level,
leading to an imbalance that can be dangerous and potentially
life-threatening if not promptly treated. The availability of large
amounts of data from continuous glucose monitoring (CGM),
insulin doses, carbohydrate intake, and additional vital signs,
together with deep learning (DL) techniques, has revolutionized
algorithmic approaches for BG prediction in T1D, achieving
superior performance. In our study, we employed a Long Short-
Term Memory (LSTM) neural network architecture to predict
hypoglycemia events in patients with T1D. For the training and
testing, we utilized the OhioT1DM (2018) dataset. In addition,
real-time data collected from an individual patient for the evalua-
tion. This patient utilized the CGM FreeStyle Libre (FSL) system,
along with a smartwatch to monitor step count. The LSTM
model exhibited performance demonstrating exceptional levels
of sensitivity, specificity, and accuracy scores of 97.09%, 94.17%,
and 95.63%, respectively, when assessed using the Ohio test
dataset. Our research provides strong evidence supporting the
system’s efficacy in managing hypoglycemia events in individuals
diagnosed with T1D.

Index Terms—Hypoglycemia, Deep learning, Type 1 diabetes,
Glucose prediction, Classification

I. INTRODUCTION

Type 1 diabetes (T1D) is a chronic medical condition char-
acterized by pancreatic insulin deficiency, leading to impaired
regulation of blood glucose levels. T1D is an autoimmune
disease where the immune system mistakenly targets and
destroys the insulin-producing β cells in the pancreas [1], [2],
[3]. The management of T1D requires the adoption of intensive

insulin therapies, which represent a lifelong commitment.
These therapies enable patients to effectively control elevated
blood glucose (BG) levels, thereby preventing hyperglycemia
[4], they also pose the risk of hypoglycemia. Individuals with
T1D face the complex challenge of achieving glycemic control
within a normal range, striking a balance between preventing
and avoiding hyperglycemia events [5].

The scientific integration of continuous glucose monitoring
(CGM) with multiple daily injections (MDI) therapy results
in the acquisition of a substantial dataset, which presents
promising prospects for advancing diabetes management [6].
Expanding on this framework, machine learning (ML) method-
ologies have been utilized to forecast BG levels continu-
ously. Continuous predictive modeling plays a crucial role
in empowering patients to take proactive measures to prevent
the occurrence of hypoglycemia or hyperglycemia. Extensive
research efforts are dedicated to this topic, as evidenced by
numerous investigations in the field [7], [8], [9], [10]. In a
comprehensive study conducted by Oviedo and collaborators
on blood glucose prediction techniques [11], only a minor
portion, comprising 13% of the studies, focused on predicting
adverse glycemia events, while the vast majority, accounting
for 87%, concentrated on the continuous forecasting of BG
levels.

The primary focus of most studies is centered around
predicting hypoglycemia [12], [13], [14], [15], [16]. For in-
stance, Reddy et al. [13] applied ML to predict the onset of
hypoglycemia events during aerobic exercise in individuals
with T1D. In a distinct study, Oviedo et al. [12] utilized
support vector machines (SVM) with historical data from 10
adults with T1D undergoing Sensor-Augmented Pump (SAP)
therapy to forecast postprandial hypoglycemia occurrences.979-8-3503-6263-3/24/$31.00 ©2024 IEEE



Other studies have introduced the prediction of hypoglycemia
using personalized models, as demonstrated in the cited
references [1], [17]. Current methodologies have refocused
their efforts on predicting a spectrum of adverse events in
T1D, encompassing both hypoglycemia and hyperglycemia
[18], [19]. Their approach entails the classification of adverse
glycemia events rather than employing regression, resulting in
enhanced performance outcomes.

In this study, we present an approach for predicting hypo-
glycemia events in patients with T1D. Initially, we conducted
data preprocessing on data collected from a volunteer and
the OhioT1DM dataset. Subsequently, we applied a Long
Short-Term Memory (LSTM) neural network to forecast glu-
cose levels using a diverse set of features. Furthermore, we
employed a classification framework to assess the predictive
performance of the model in anticipating hypoglycemia events.
Finally, we introduced a comprehensive system for predicting
and managing hypoglycemia events, which we subsequently
validated.

II. MATERIALS AND METHODS

The proposed hypoglycemia management technique in-
cludes thorough preprocessing, data splitting, model construc-
tion, hyperparameter tuning, and comprehensive evaluation
using two distinct test datasets to assess the effectiveness of
our hypoglycemia prediction strategy. The workflow of our
approach is described below in Fig. 1.

Fig. 1. The framework of our proposed methodology.

In this study, we utilized the OhioT1DM dataset [20], which
consists of comprehensive data from 12 patients diagnosed
with T1D undergoing insulin pump therapy. The dataset in-
cludes data collected from CGM devices and activity bands
worn by the patients, who diligently recorded their daily
activities using a designated smartphone application over an
approximately eight-week period. The Blood Glucose Level
Prediction (BGLP) Challenge, initiated in 2018, provided
data from six patients (referred to as Group 1) from this
dataset. Subsequently, in the 2020 iteration of the challenge,
an additional dataset comprising six more patients (designated
as Group 2) was introduced. For our study, we specifically
focused on using the Group 1 dataset due to the presence
of specific data features that were deemed essential for our

research objectives and were not available in the Group 2
dataset. A detailed description of patient devices, data format,
and dataset characteristics can be found in the OhioT1DM
dataset publication [20].

Additionally, authentic patient data obtained during a case
study was utilized for validating the model. A 17-year-
old male patient diagnosed with T1D utilized the CGM
FreeStyle Libre (FSL) system for continuous monitoring of
BG levels. The patient also employed the TicWatch Pro 3
Ultra smartwatch to collect data on physical activity. The
patient received comprehensive training on operating these
devices, including data extraction from the smart-watch via
the Google Fit platform. Detailed records were maintained for
each administered insulin dose, covering both rapid-acting and
long-acting insulin, as well as estimates for the carbohydrate
content of every meal consumed. Participation in the study was
formalized through the execution of a consent form, signifying
explicit agreement to participate in the research.

A. Data Pre-Processing

In our study, both the OhioT1DM and Collected datasets
were utilized, incorporating a common set of five essential
recorded features for experimental investigations. These fea-
tures included CGM values, insulin basal rate (indicating long-
acting insulin administration), bolus amount (reflecting short-
acting insulin doses), carbohydrate intake (indicating meal
consumption), and step count. To align with the Collected
dataset, we resampled the 5-minute interval CGM values to
15-minute intervals using the mean method. Missing data,
particularly regarding glucose values, were addressed using
forward and backward filling techniques for data imputation.
Bolus amounts, step counts, and carbohydrate intake values
were set to zero when absent or unrecorded. Insulin basal rate
values were imputed using forward filling, given that changes
were only recorded when adjustments occurred; missing data
indicated continuity of the most recent value. To standardize
feature values and ensure consistency across the datasets,
normalization was applied, scaling all features to a uniform
range from zero to one.

B. Data Balancing

The OhioT1DM and Collected datasets displayed a signif-
icant imbalance in the number of CGM intervals containing
reported hypoglycemia events compared to those without such
events. To address this imbalance and achieve a more equitable
data distribution, we implemented an oversampling technique.
we partitioned the data into discrete units, each consisting of a
specific number of sequential samples. We then classified each
unit based on the blood glucose level of its final sample. Units
were categorized as hypoglycemia units if the last sample
exhibited blood sugar levels below 70 mg/dL [2], [21], and as
normal units if the last sample showed blood sugar levels at
or above 70 mg/dL. Following classification, we identified the
number of hypoglycemic units and normal units to guide the
oversampling procedure for the training dataset. This involved
duplicating the number of units within the minority class



(hypoglycemia units) to achieve a balanced representation
equivalent to that of the majority class (normal units).

The OhioT1DM dataset was divided into separate subsets
for training, validation, and testing. Specifically, 70% of the
hypoglycemia units were allocated to the training subset, while
20% were designated for validation, and the remaining 10%
were reserved for testing. Additionally, the Collected dataset
was exclusively used for testing purposes. We established a
scenario for the number of samples per unit. The scenario
comprised 13 samples per unit, covering a total temporal span
of three hours of data, as illustrated in Fig. 2.

Fig. 2. The methodology employed for establishing the unit entailed itera-
tively adjusting the sampling window by one sample.

C. Long Short-Term Memory (LSTM) Networks

LSTMs were initially proposed by Hochreiter and Schmid-
huber [22]. LSTMs are a specialized category of Recurrent
Neural Networks (RNNs) designed to capture dependencies
across extended temporal sequences effectively. This unique
capability enables LSTMs to retain crucial sequential patterns,
enhancing parameter learning efficiency, particularly for time
series data analysis. In our study, the LSTM model incorpo-
rates historical information spanning a specified number of
time steps as input to generate single-step prediction. This
approach involves leveraging past data to inform current pre-
dictions, enabling the model to capture temporal dependencies
and make accurate forecasts based on historical context. we
implemented it using the Keras platform. The model architec-
ture included an LSTM layer followed by a dropout layer, a
densely connected layer, and a final output layer with a single
unit for prediction.

During training, we employed a batch size of 32 and
trained the model for 200 epochs. To monitor performance
and ensure model reliability, we implemented checkpointing,
saving model weights every 20 epochs and selecting the best-
performing model checkpoint from epoch 80.

D. Hyperparameter Tuning

It is essential to recognize that default hyperparameters may
not be optimal for specific datasets, necessitating the fine-
tuning of these parameters to achieve substantial improve-
ments in model performance. In our endeavor to optimize

hyperparameters, we employed Bayesian optimization [23],
which has proven effective in systematically improving model
configurations. A comprehensive description of the model’s
hyperparameters, along with their corresponding optimized
values, is provided below in Table I.

TABLE I
HYPERPARAMETER CONFIGURATIONS.

Hyperparameter LSTM model
No. of units for the first layer 200

Dropout rate 0.1

No. of units for the dense layer 150

Learning rate 0.01

E. Classification for Hypoglycemia Events Prediction

Following the prediction phase, a classification threshold
was applied. Specifically, the threshold was set at 70 mg/dL
for glucose levels. Glucose values above this threshold were
categorized as ”Normal events,” while values below were
classified as ”Hypoglycemia events”.

F. Performance Metrics

This approach employed a diverse set of metrics to evaluate
the performance of the implemented methodology.

1. Prediction
To evaluate the performance of the model following the

prediction of BG levels, we employed the root mean squared
error (RMSE) as computed by (1) and mean absolute error
(MAE) as expressed in (2).

RMSE =

√√√√ 1

n

n∑
n=1

(yi − ŷi)2 (1)

MAE =
1

n

n∑
n=1

|yi − ŷi| (2)

where yi is actual glucose level and ŷi is predicted glucose
level, both measured in mg/dl.

2. Classification
To evaluate the classification performance, metrics derived

from the confusion matrix were utilized. Table II presents
a concise summary of primary evaluation metrics, including
sensitivity (SE), specificity (SP), accuracy, and the F1 score,
utilized to assess the model’s performance.

III. RESULTS

A. Prediction Performance

Table III presents the RMSE and MAE outcomes for the
Ohio test dataset. Table IV provides a detailed summary of
the RMSE and MAE outcomes, with specific emphasis on
BG values below the critical threshold of 70 mg/dL.



TABLE II
METRICS TO EVALUATE THE PERFORMANCE OF THE MODEL.

Performance Metrics

SE = TP
TP+FN

Sp= TN
TN+FP

Accuracy = TP+TN
TP+FN+TN+FP

F1score = 2TP
2TP+FP+FN

TABLE III
TOTAL RMSE AND MAE RESULTS FOR THE TOTAL TEST DATASET.

Test dataset RMSE MAE

Ohio 21.998 9.64

Collected 41.75 20.571

B. Classification

Table V presents a detailed synthesis of the BG clas-
sification outcomes. Following BG prediction, each sample
undergoes systematic classification as either indicating a hy-
poglycemia event or representing a normal event.

IV. DISCUSSION

The results reveal a notable increase in both the total RMSE
and MAE for the Collected test dataset in comparison to
the Ohio test dataset. Specifically, when focusing on hypo-
glycemia cases, there is a substantial escalation in the RMSE
and MAE error rates, underscoring the challenge of accurately
identifying hypoglycemia events within the Collected test
dataset. Additionally, The LSTM model exhibits significantly
higher accuracy when evaluated on the Ohio test dataset
compared to the Collected test dataset.

The difference in performance when using real-time data
compared to the OhioT1DM dataset is attributed to the fact
that patients in the OhioT1DM dataset used insulin pumps,
whereas the real-time data did not. This discrepancy in insulin
delivery methods introduces variability that affects the model’s
ability to generalize and maintain its predictive accuracy across
different datasets.

For instance, in the evaluation of the LSTM model using
the Ohio test dataset, which included 103 hypoglycemia events

TABLE IV
RMSE AND MAE RESULTS FOR BG VALUES LESS THAN 70 MG/DL.

Test dataset RMSE MAE

Ohio 9.049 6.124

Collected 49.934 41.142

TABLE V
SE, SP, ACCURACY, AND F1-SCORE FOR THE LSTM MODEL.

Test dataset LSTM model

Ohio SE % 97.09

SP % 94.17

Accuracy % 95.63

F1-score % 95.69

Collected SE % 13.04

SP % 97.83

Accuracy % 55.43

F1-score % 22.64

and 103 normal events, it identified 106 cases as hypoglycemia
events and 100 cases as normal events. However, when applied
to the Collected dataset, which contained 46 cases of hypo-
glycemia events and 46 cases of normal events, it classified 7
cases as hypoglycemia events and 85 cases as normal events.

V. CONCLUSION

In this paper, we propose an advanced approach to predict
hypoglycemia events in patients with T1D using a compre-
hensive feature set that includes glucose levels, insulin doses,
carbohydrate intake, and step count. Accurately predicting
hypoglycemia events is crucial as it empowers patients to take
proactive preventive measures, thereby enhancing their overall
health and safety.

Our findings indicate that the LSTM model demonstrates
robust performance with the Ohio test dataset. However,
its performance was less satisfactory when applied to real-
time data, highlighting a limitation in the model’s ability to
generalize to real-world scenarios.

To address these limitations, future works should explore
the implementation of more advanced DL models, which could
potentially offer improved performance and greater robustness.
Additionally, expanding the range of features incorporated into
the analysis could enhance the model’s effectiveness, ensuring
it captures a more comprehensive set of factors influencing
hypoglycemia events. By advancing these methodologies, we
can move closer to developing reliable, real-time prediction
tools that significantly benefit patients with T1D.
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Vehi, “Risk-based postprandial hypoglycemia forecasting using super-
vised learning,” Int J Med Inform, vol. 126, pp. 1–8, Jun. 2019, doi:
10.1016/j.ijmedinf.2019.03.008.

[13] R. Reddy, N. Resalat, L. M. Wilson, J. R. Castle, J. El Youssef, and
P. G. Jacobs, “Prediction of Hypoglycemia During Aerobic Exercise in
Adults With Type 1 Diabetes,” J Diabetes Sci Technol, vol. 13, no. 5,
pp. 919–927, Sep. 2019, doi: 10.1177/1932296818823792.

[14] O. Mujahid, I. Contreras, and J. Vehi, “Machine learning techniques
for hypoglycemia prediction: Trends and challenges,” Sensors (Switzer-
land), vol. 21, no. 2. MDPI AG, pp. 1–21, Jan. 02, 2021. doi:
10.3390/s21020546.

[15] D. Dave et al., “Feature-Based Machine Learning Model for Real-Time
Hypoglycemia Prediction,” J Diabetes Sci Technol, vol. 15, no. 4, pp.
842–855, 2020, doi: 10.1177/1932296820922622.

[16] V. Felizardo, D. MacHado, N. M. Garcia, N. Pombo, and P. Bran-
dao, “Hypoglycaemia Prediction Models With Auto Explanation,”
IEEE Access, vol. 10, pp. 57930–57941, 2022, doi: 10.1109/AC-
CESS.2021.3117340.

[17] A. Bhimireddy, P. Sinha, B. Oluwalade, J. W. Gichoya, and S.
Purkayastha, “Blood Glucose Level Prediction as Time-Series Modeling
using Sequence-to-Sequence Neural Networks.” [Online]. Available:
http://ceur-ws.org/Vol-2148/

[18] F. Iacono, L. Magni, and C. Toffanin, “Personalized LSTM-
based alarm systems for hypoglycemia and hyperglycemia preven-
tion,” Biomed Signal Process Control, vol. 86, Sep. 2023, doi:
10.1016/j.bspc.2023.105167.

[19] F. D’Antoni et al., “Layered Meta-Learning Algorithm for Predict-
ing Adverse Events in Type 1 Diabetes,” IEEE Access, vol. 11, pp.
9074–9094, 2023, doi: 10.1109/ACCESS.2023.3237992.

[20] C. Marling and R. Bunescu, “The OhioT1DM Dataset for Blood
Glucose Level Prediction: Update 2020,” 2020. [Online]. Available:
http://www.jdrf.org/impact/research/artificial-

[21] C. Duckworth et al., “Explainable Machine Learning for Real-
Time Hypoglycemia and Hyperglycemia Prediction and Personal-
ized Control Recommendations,” J Diabetes Sci Technol, 2022, doi:
10.1177/19322968221103561.

[22] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,”
Neural Comput, vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi:
10.1162/neco.1997.9.8.1735.

[23] P. K. P, M. A. B. V, and G. G. Nair, “An efficient classification
framework for breast cancer using hyper parameter tuned Random
Decision Forest Classifier and Bayesian Optimization,” Biomed Signal
Process Control, vol. 68, Jul. 2021, doi: 10.1016/j.bspc.2021.102682.


